Dr. Y. Jaya Vinse Ruban
Department of Chemsitry
St. Xavier's college (Autonomous)
Palayamkottai-627002.

Arrhenius equation

- The effect of temperature on the rate of equation and hence rate constant (k) was shown by Arrhenius and this equation is called Arrhenius equation.

- For two different temperatures T1 and T2

Arrhenius Equation

Another useful form of the equation relates the rate constant k at two temperatures

$$
\ln \frac{k_{2}}{k_{1}}=-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)
$$

Where k_{1} is the rate constant at T_{1}, and k_{2} is the rate constant at T_{2}

Plot of log k versus 1/T

- The two quantities A and Ea are collectively called Arrhenius Parameters.
- The factor $e^{-E a / R T}$ in the Arrhenius equation is called Boltzmann factor.
- A is dimensionless and has the unit Time ${ }^{-1}$. That is why A is called as frequency factor.

Temperature dependent of k

- Derivative of Arrhenius equation with respect to Temperature

$$
\begin{aligned}
& \mathrm{k}=\mathrm{Ae}-\mathrm{Ea} / \mathrm{RT} \\
& \mathrm{dk} / \mathrm{dT}=\mathrm{Ae}^{-E a / R T} \cdot \mathrm{Ea} / \mathrm{RT}^{2} \\
& =\mathrm{k} \cdot \mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}} .
\end{aligned}
$$

- The positive value of Ea, the temperature dependence will be greater for reactions with large value of Ea.

Parameters

- Only reactions whose Ea falls in the range of 50-55 kJmol^{-1} are found to double their rate for this range (from 298 to 308 K) of temperature.
- The fraction of molecules having energy equal to or greater than activation energy (Ea) is given by the expression:

$$
\begin{aligned}
x & =n / N=e^{-E a / R T} \\
\log x & =-E a / 2.303 R T
\end{aligned}
$$

- Arrhenius Constant $(A)=\mathrm{PZ}_{\mathrm{AB}}$ where P is the orientation or probability or steric factor and $Z_{A B}$ represents collition frequency of reactants A and B.
- The Ea of a reaction cannot be negative.
- The Ea of a reaction can not be negative.
- Rate constant cannot be greater than or equal to A

Thank you

